LMIs in Control/pages/L2 gain of systems with multiplicative noise

From testwiki
Jump to navigation Jump to search

The System

x(k+1)=Ax(k)+Bww(k)+i=1L(Aix(k)+Bw,iw(k))pi(k),x(0)=0,z(k)=Czx(k)+Dzww(k)+i=1L(Cz,ix(k)+Dzw,iw(k))pi(k),

where p(0),p(1),, are independent, identically distributed random variables with Ep(k)=0,Ep(k)p(k)=Σ=diag(σ1,,σL) and x(0) is independent of the process p.

The Data

The matrices A,Bw,{Ai.Bw,i}i=1L,Cz,Dzw,{Cz,i,Dzw,i}i=1L,{σi}i=1L.

The LMI:

min{P0,γ2}γ2s.t.[ABwCzDzw][P00I][ABwCzDzw][P00γ2I]+i=1Lσi2[AiBw,iCz,iDzw,i][P00I][AiBw,iCz,iDzw,i]0

Implementation

https://github.com/mkhajenejad/Mohammad-Khajenejad/commit/a34713575cd8ae9831cb5b7eb759d0fd45a8c37f

Conclusion

The optimal γ returns an upper bound on the 2 gain of the system. .

Remark

It is straightforward to apply scaling method [Boyd, sec.6.3.4] to obtain component-wise results.

Return to Main Page:

Template:BookCat