LMIs in Control/pages/Output Energy Bounds for Lure System

From testwiki
Jump to navigation Jump to search

The System

x˙(t)=Ax(t)+Bpp(t)+Bww(t),z(t)=Czx(t)pi(t)=ϕi(qi(t)),i=1,,npq(t)=Cqx(t),0σϕi(σ)σ2 σ

The Data

The matrices A,Bp,Bw,Cq,Cz,x(0).

The Optimization Problem:

The following optimization problem should be to find the tightest upper bound for the output energy of the above Lur'e system.

minP0,Λ=diag(λ1,,λnp)0,T=diag(τ1,,τnp)0x(0)(P+CqΛCq)x(0)[AP+PAPBp+ACqΛ+CqTBpP+ΛCqA+TCqΛCqBp+BpCqΛ2T]0

Implementation

https://github.com/mkhajenejad/Mohammad-Khajenejad/blob/master/LMIs%20for%20Output%20Energy%20Bounds%20of%20Lure's%20Systems

Conclusion

The value function returns the the lowest bound for the energy function of the Lure's systems, i.e., J=0zz dt with initial conditions x(0).

Remark

The key step in the proof is to satisfy ddtV(x)+zz0, where V(.) is Lyapunov function in a special form.

Return to Main Page:

Template:BookCat