LMIs in Control/pages/Stability of Quadratic Constrained Systems

From testwiki
Jump to navigation Jump to search

The System

x˙(t)=Ax(t)+Bpp(t)+Buu(t)+Bww(t),q(t)=Cqx(t)+Dqpp(t)+Dquu(t)+Dqww(t),z(t)=Czx(t)+Dzpp(t)+Dzuu(t)+Dzww(t)0tp(τ)p(τ) dτ0tq(τ)q(τ) dτ.

The Data

The matrices A,Bp,Bw,Cq,Cz,Dqp,Dzw.

The LMI:

The following feasibility problem should be solved.

Find{P0,λ0}:s.t.[AP+PA+λCqCqPBp+λCqDqp(PBp+λCqDqp)λ(IDqpDqp)]0.

Implementation

https://github.com/mkhajenejad/Mohammad-Khajenejad/commit/38f3b55ca7060a1260384a96e9dc31142af07a9a

Conclusion

The integral quadratic constrained system is stable if the provided LMI is feasible

Remark

The key point of the proof is to satisfy V˙<0 whenever ppqq, using 𝒮-procedure.

Return to Main Page:

Template:BookCat