LMIs in Control/pages/dt mixed H2 Hinf optimal dynamic output feedback control

From testwiki
Jump to navigation Jump to search

WIP, Description in progress

This part shows how to design dynamic outpur feedback control in mixed 2 and sense for the discrete time .

Problem

Consider the discrete-time generalized LTI plant 𝒫 with minimal state-space realization

xk+1=Adxk+[Bd1,1Bd1,2][w1,kw2,k]+Bd,2uk,

[z1,kz2,k]=[Cd1,1Dd1,2]xk+[Dd11,11Dd11,12Dd11,21Dd11,22][w1,kw2,k]+[D12,1D12,2]uk,

yk=Cd2xk+[D21,1D21,2][w1,kw2,k]+Dd22uk

Theorem

A discrete-time dynamic output feedback LTI controller with state-space realization (Adc,Bdc,Cdc,Ddc) is to be designed to minimize the 2 norm of the closed loop transfer matrix T11(z) from the exogenous input w1,k to the performance output z1,k while ensuring the norm of the closed-loop transfer matrix T22(z) from the exogenous input w2,k to the performance output z2,k is less than γd, where

T11(z)=CdCL1,1(zIAdCL)1BdCL1,1,

T22(z)=CdCL1,2(zIAdCL)1BdCL1,2+DdCL11,22,

AdCL=[Ad+Bd2DdcD~d1Cd2Bd2(I+DdcD~d1Dd22)CdcBdcD~d1Cd2Adc+BdcD~d1Dd22Cdc],

BdCL1,1=[Bd1,1+Bd2DdcD~d1Dd21,1BdcD~d1Dd21,1],

BdCL1,2=[Bd1,2+Bd2DdcD~d1Dd21,2BdcD~d1Dd21,2],

CdCL1,1=[Cd1,1+Dd12,1DdcD~d1Cd2,1Dd12,1(I+DdcD~d1Dd22)Cdc],

CdCL1,2=[Cd1,2+Dd12,2DdcD~d1Cd2,2Dd12,2(I+DdcD~d1Dd22)Cdc],

DdCL11,22=Dd11,22+Dd12,2DdcD~d1Dd21,2,

and D~d=IDd22Ddc.

Synthesis Method

Solve for Adnnx×nx,Bdnnx×nx,Cdnnu×nx,Ddnnu×ny,X1,Y1𝕊nx,Z𝕊nZ1, and μ>0 that minimizes 𝒥(μ)=μ subjects to X1>0, Y1>0 Z>0,

[X1IX1Ad+BdnCd2AdnX1Bd1,1+BdnDd21,1*Y1Ad+Bd2CdnDd2AdY1+Bd2CdnBd1,1+Bd2DdnDd21,1**X1I0***Y10****I]>0,

[X1IX1Ad+BdnCd2AdnX1Bd1,2+BdnDd21,20*Y1Ad+Bd2CdnDd2AdY1+Bd2CdnBd1,2+Bd2DdnDd21,20**X1I0Cd1,2T+Cd2TDdnTDd12,2T***Y10Y1Cd1,2T+CdnTDd12,2T****γdIDd11,22T+Dd21,2TDdnTDd12,2T*****γdI]>0

[ZCd1,1+Dd12,1DdnCd2Cd1,1,Y1T+Dd12,1Cdn*X1I**Y1]>0,

Dd11,11+Dd12,1DdnDd21,1=0,

[X1I*Y1]>0,

trZ<μ.

The controller is recovered by

Adc=AdKBdc(IDd22Ddc)1Dd22Cdc,

Bdc=BdK(IDdcDd22),

Cdc=(IDdcDd22)CdK,

Ddc=(I+DdKDd22)1DdK,where<math>[AdKBdKCdKDdK]=[X2X1Bd20I]1([AdnBdnCdnDdn][X1AdY1000])[Y2T0Cd2Y1I]1, and the matrices X2 and Y2 satisfy X2Y2T=IX1Y1. If D22=0, then Adc=AdK,Bdc=BdK,Cdc=CdK and Ddc=DdK.

Given X1 and Y1, the matrices X2 and Y2 can be found using a matrix decomposition, such as a LU decomposition or a Cholesky decomposition.

If Dd11,11=0,Dd12,10, and Dd21,1=0, then it is often simplest to choose Ddn=0 in order to satisfy the equality constraint Dd11,11+Dd12,1DdnDd21,1=0,.


WIP, additional references to be added

A list of references documenting and validating the LMI.

Return to Main Page:

Template:Bookcat