LMIs in Control/pages/dt mixed H2 Hinf optimal output feedback control

From testwiki
Jump to navigation Jump to search

WIP, Description in progress

This part shows how to design dynamic outpur feedback control in mixed 2 and sense for the continuous time.

Problem

Consider the discrete-time generalized LTI plant 𝒫 with minimal state-space realization

x˙=Ax+[B1,1B1,2][w1w2]+B2u,

[z1z2]=[C1,1D1,2]xk+[D11,11D11,12D11,21D11,22][w1w2]+[D12,1D12,2]u,

y=Cd2x+[D21,1D21,2][w1w2]+Dd22u

Theorem

A continuous-time dynamic output feedback LTI controllerwith state-space realization (Ac,Bc,Cc,Dc) is to be designed to minimize the 2 norm of the closed-loop transfer matrix T11(s) from the exogenous input w1 to the performance output z1 while ensuring the H∞ norm of the closed-loop transfer matrix T22(s) from the exogenous input w2 to the performance output z2 is less than γd, where

T11(s)=CCL1,1(sIACL)1BCL1,1,

T22(s)=CCL1,2(sIACL)1BCL1,2+DCL11,22,

AdCL=[A+B2DcD~1C2B2(I+DcD~1D22)CcBcD~1C2Ac+BcD~1D22Cc],

BCL1,1=[B1,1+B2DcD~1D21,1BcD~1D21,1],

BCL1,2=[B1,2+B2DcD~1D21,2BcD~1D21,2],

CCL1,1=[C1,1+D12,1DcD~1C2,1D12,1(I+DcD~1D22)Cc],

CCL1,2=[C1,2+D12,2DcD~1C2,2D12,2(I+DcD~1D22)Cc],

DCL11,22=D11,22+D12,2DcD~1D21,2,

and D~=ID22Dc.


Synthesis Method

Solve for Annx×nx,Bnnx×nx,Cnnu×nx,Dnnu×ny,X1,Y1𝕊nx,Z𝕊nZ1, and μ>0 that minimizes 𝒥(μ)=μ subjects to X1>0, Y1>0 Z>0,

[N11A+AnT+B2DnC2B1,1+B2DnD21,1*X1A+ATX1+BnC2+C2TBnTX1B1,1+BnD21,1**I]<0,

[N11A+AnT+B2DnC2B1,1+B2DnD21,1Y1TC1,2T+CnTD12,2T*X1A+ATX1+BnC2+C2TBnTX1B1,1+BnD21,1C1,2T+C2TDnTD12,2T**γdID11,22T+D21,2TDnTD12,2T***γdI]<0,

[Y1IY1C1,1T+CnTD12,1T*X1C1,1T+C2TDnTD12,1T**Z]>0,

D11,11+D12,1DnD21,1=0,

[X1I*Y1]>0,

trZ<μ,

where N11=AY1+Y1AT+B2Cn+CnTB2T.

The controller is recovered by

Ac=AKBc(ID22Dc)1D22Cc,

Bc=BK(IDcD22),

Cc=(IDcD22)CK,

Dc=(I+DKD22)1DK,where<math>[AKBKCKDK]=[X2X1B20I]1([AnBnCnDn][X1AdY1000])[Y2T0C2Y1I]1, and the matrices X2 and Y2 satisfy X2Y2T=IX1Y1. If D22=0, then Ac=AK,Bc=BK,Cc=CK and Dc=DK.

Given X1 and Y1, the matrices X2 and Y2 can be found using a matrix decomposition, such as a LU decomposition or a Cholesky decomposition.

If D11,11=0,D12,10, and D21,10, then it is often simplest to choose Dn=0 in order to satisfy the equality constraint D11,11+D12,1DnD21,1=0,.



WIP, additional references to be added

A list of references documenting and validating the LMI.

Return to Main Page:

Template:Bookcat