Linear Algebra/Dimension Characterizes Isomorphism
In the prior subsection, after stating the definition of an isomorphism, we gave some results supporting the intuition that such a map describes spaces as "the same". Here we will formalize this intuition. While two spaces that are isomorphic are not equal, we think of them as almost equal— as equivalent. In this subsection we shall show that the relationship "is isomorphic to" is an equivalence relation.[1]
Template:AnchorAs a consequence of that result, we know that the universe of vector spaces is partitioned into classes: every space is in one and only one isomorphism class.
|
|
This follows from the next two lemmas.
That ends the proof of Theorem 2.2. Template:AnchorWe say that the isomorphism classes are characterized by dimension because we can describe each class simply by giving the number that is the dimension of all of the spaces in that class.
This subsection's results give us a collection of representatives of the isomorphism classes.[2]
The proofs above pack many ideas into a small space. Through the rest of this chapter we'll consider these ideas again, and fill them out. For a taste of this, we will expand here on the proof of Lemma 2.4.
We will close this section with a summary.
Recall that in the first chapter we defined two matrices as row equivalent if they can be derived from each other by elementary row operations (this was the meaning of same-ness that was of interest there). We showed that is an equivalence relation and so the collection of matrices is partitioned into classes, where all the matrices that are row equivalent fall together into a single class. Then, for insight into which matrices are in each class, we gave representatives for the classes, the reduced echelon form matrices.
In this section, except that the appropriate notion of same-ness here is vector space isomorphism, we have followed much the same outline. First we defined isomorphism, saw some examples, and established some properties. Then we showed that it is an equivalence relation, and now we have a set of class representatives, the real vector spaces , , etc.
|
|
As before, the list of representatives helps us to understand the partition. It is simply a classification of spaces by dimension.
In the second chapter, with the definition of vector spaces, we seemed to have opened up our studies to many examples of new structures besides the familiar 's. We now know that isn't the case. Any finite-dimensional vector space is actually "the same" as a real space. We are thus considering exactly the structures that we need to consider.
The rest of the chapter fills out the work in this section. In particular, in the next section we will consider maps that preserve structure, but are not necessarily correspondences.
Exercises
Template:Linear Algebra/Book 2/Recommended Template:TextBox Template:Linear Algebra/Book 2/Recommended Template:TextBox Template:Linear Algebra/Book 2/Recommended Template:TextBox Template:Linear Algebra/Book 2/Recommended Template:TextBox Template:Linear Algebra/Book 2/Recommended Template:TextBox Template:TextBox Template:TextBox Template:TextBox Template:Linear Algebra/Book 2/Recommended Template:TextBox Template:Linear Algebra/Book 2/Recommended Template:TextBox Template:TextBox Template:TextBox Template:TextBox Template:TextBox Template:TextBox Template:Linear Algebra/Book 2/Recommended Template:TextBox Template:TextBox Template:TextBox