Linear Algebra/Laplace's Expansion
We finish by applying this result to derive a new formula for the inverse of a matrix. With Theorem 1.5, the determinant of an matrix can be calculated by taking linear combinations of entries from a row and their associated cofactors.
Recall that a matrix with two identical rows has a zero determinant. Thus, for any matrix , weighing the cofactors by entries from the "wrong" row — row with — gives zero
because it represents the expansion along the row of a matrix with row equal to row . This equation summarizes () and ().
Note that the order of the subscripts in the matrix of cofactors is opposite to the order of subscripts in the other matrix; e.g., along the first row of the matrix of cofactors the subscripts are then , etc.
The formulas from this section are often used for by-hand calculation and are sometimes useful with special types of matrices. However, they are not the best choice for computation with arbitrary matrices because they require more arithmetic than, for instance, the Gauss-Jordan method.
Exercises
Template:Linear Algebra/Book 2/Recommended Template:TextBox Template:Linear Algebra/Book 2/Recommended Template:TextBox Template:TextBox Template:Linear Algebra/Book 2/Recommended Template:TextBox Template:Linear Algebra/Book 2/Recommended Template:TextBox Template:TextBox Template:Linear Algebra/Book 2/Recommended Template:TextBox Template:Linear Algebra/Book 2/Recommended Template:TextBox Template:Linear Algebra/Book 2/Recommended Template:TextBox Template:Linear Algebra/Book 2/Recommended Template:TextBox Template:TextBox Template:Linear Algebra/Book 2/Recommended Template:TextBox Template:TextBox Template:TextBox Template:TextBox Template:TextBox Template:TextBox