Ordinary Differential Equations/First Order Linear 4

From testwiki
Jump to navigation Jump to search

1)

y+3y=sin(x)

Step 1: Find eP(x)dx

3dx=3x+C

eP(x)dx=Ce3x

Letting C=1, we get e3x


Step 2: Multiply through

e3xy+e3x3y=e3xsin(x)

Step 3: Recognize that the left hand is ddxeP(x)dxy

ddxe3xy=e3xsin(x)

Step 4: Integrate

(ddxe3xy)dx=e3xsin(x)dx

e3xy=e3x(3sin(x)cos(x))10+C

Step 5: Solve for y

y=3sin(x)cos(x)10+Ce3x


2)

y+1x+3y=7x2+4x

Step 1: Find eP(x)dx

dxx+3=ln(x+3)+C

eP(x)dx=Cx+3C

Letting C=1, we get x+3


Step 2: Multiply through

(x+3)y+(x+3)y=(x+3)(7x2+4x)

Step 3: Recognize that the left hand is ddxeP(x)dxy

ddx(x+3)y=(x+3)(7x2+4x)

Step 4: Integrate

(ddx(x+3)y)dx=(x+3)(7x2+4x)dx

(x+3)y=7x44+25x33+6x2+C

Step 5: Solve for y

y=7x44+25x33+6x2+Cx+3

3)

(x4ex2mxy2)dx+2mx2ydy

Step 1: Rearrange

2ydydx2y2x=x2ex

Step 2: Substitute z=y2dzdx=2ydydx

dzdx2zx=x2ex

Step 3: Find eP(x)dx

Integrating Factor=1x2

Step 4: Solve for y

y(x)=x2x2exdxmx2=x2exmdx=x2exm+Cx2 Template:BookCat