Ordinary Differential Equations/Separable 4

From testwiki
Jump to navigation Jump to search

Existence problems

1) f(x,y) has no discontinuities, so a solution exists. fy has no discontinuities, so the solution is unique.

2) f(x,y) is not defined for the point (-1,10) because ln(x) is not defined. So no solution exists.

3) f(x,y) has discontinuities at y=1 and -1, but not at 0 so a solution exists. fy has no discontinuities at (0,16) so the solution is unique.

4) f(x,y) has discontinuities at y<0, but not at 1 so a solution exists. fy is discontinuous at 1, so the solution is not unique

5) f(x,y) has discontinuities at -3 and -4, but not at 0 so a solution exists. fy has no discontinuities at (5,9) so the solution is unique.

6) f(x,y) has a discontinuity at x=5, so no solution exists.

Separable equations

7) y=y3sec2(x)

dyy3=sec2(x)dx

dyy3=sec2(x)dx

12y2=tan(x)+C

y=1(2tan(x)+C)


8) y=5y2+6y

ydy5y2+6=dx

ydy5y2+6=dx

110ln(5y2+6)=x+C

y=±Ce10x65


9) y=x3/y3

y3dy=x3dx

y3dy=x3dx

14y4=14x4+C

y=(x4+C)14


10) y=x2+3x9

dy=(x2+3x9)dx

dy=(x2+3x9)dx

y=13x3+32x29x+C


11) y=cos(y)/sin(y)

sin(y)dycos(y)=dx

sin(y)dycos(y)=dx

ln(cos(y))=x+C

y=arccos(Cex)


12) y=cos(x)sin(y)

sin(y)dy=cos(x)dx

sin(y)dy=cos(x)dx

cos(y)=sin(x)+C

y=arccos(sin(x)+C)

Initial value problems

13) y=cos(x)+sin(x),y(0)=1

dy=(cos(x)+sin(x))dx

dy=(cos(x)+sin(x))dx

y=sin(x)cos(x)+C

1=sin(0)cos(0)+C=01+C=C1

C=2

y=sin(x)cos(x)+2


14) y=7y2,y(5)=9

dyy2=7dx

dyy2=7dx

1y=7x+C

y=17x+C

9=17*5+C

C=3169

y=17x+3169

Template:BookCat