Random Processes in Communication and Control/M-Sep14

From testwiki
Jump to navigation Jump to search

Last Time

PMF P[X=x]=P[s:X(s)=x]


a) PX(x)0xSx


b) xSXPX(x)=1


c) event BSX


P[B]=xBPX(x)

Some Useful Random Variables

Bernoulli R.V

PX(x)={1px=0px=10o.w.


0p1 success probability

Example

1) Flip a coin X=# of H


2) Manufacture a Chip X=# of acceptable chips


3) Bits you transmit successfully by a modem

Geometric Random Variable

Number of trials until (and including) a success for an underlying Bernoulli


PX(x)=p(1p)x1x=1,2,3,

Example

1) Repeated coin flips X=# of tosses until H


2) Manufacture chips X=3 of chips produced until an acceptable time

Binomial R.V

"# of successes in n trials"


Px(x)=(nx)px(1p)nxx=0,1,n


Example

1) Flip a coin n times. X= # of heads.


2) Manufacture n chips. X= # of acceptable chips.


Note: Binomial X=Y1+Y2+Y3++Yn where Y1+Y2+Y3+Yn are independent Bernoulli trials


Note: n=1; Binomial=Bernoulli; X=Y1

Pascal R.V

"number of trials until (and including) the kth success with an underlying Bernoulli"


PX(x)=(x1k1)pk(1p)xkx=k,k+1,k+2,


where (x1k1) is k1 successes in x1 trials


Note: Pascal X=Y1+Y2++Yk where Y1,Y2,Yk are geometric R.V.


Note: K=1 Pascal=Geometric

Example

X=# of flips until the kth H

Discrete Uniform R.V.

PX(x)={1ba+1x=a,a+1,,b0otherwise


Example

1) Rolling a die. a=1,b=6


PX(x)={16x=1,,60otherwise


2) Flip a fair coin. X=# of H


PX(x)={12x=012x=10 otherwise 


Poisson R.V.

PX(x)=eααxx!x=0,1,2


(Exercise) limiting case of binomial with n,p0,np=α


PMF is a complete model for a random variable

Cumulative Distribution Function

FX(x)=P[Xx]=xxPX(X=x)


Like PMF, CDF is a complete description of random variable.

Example

Flip the coins X=# of H


PX(x)={14x=012x=112x=20otherwise


P[X0]=P[X=0]P[X0.5]=P[X=0]P[X1]=P[X=0]14+P[X=1]12

Properties of CDF

  • a) FX()=0FX()=P[X]=0


FX()=1FX()=P[X]=1


"starts at 0 and ends at 1"


  • b) For all xx, FX(x)FX(x)


"non-decreasing in x"


FX(x)FX(x)P[Xx]P[Xx]P[s:X(s)x]P[s:X(s)x]{s:X(s)x}{s:X(s)x}P[Xx]P[Xx]FX(x)FX(x)


  • c) For all x,x


P[xXx]=FX(x)FX(x)


"probabilities can be found by difference of the CDF"


{s:X(x)x}={s:X(x)x}{s:xX(s)x}


P[Xx]=P[Xx]+P[xXx]


  • d) For all x,


limϵ0FX(x+ϵ)=FX(x)


"CDF is right continuous"


  • e) For xiSX


FX(xi)FX(xiϵ)=PX(xi)


"For a discrete random variable, there is a jump (discontinuity) in the CDF at each value xiSX. This jump equals PX(xi)


P[xix]P[xixiϵ]=P[xiϵ<x<xi]=P[X=xi]


  • f) FX(x)=FX(xi) for all xixxi+1


"Between two jumps the CDF is constant"


P[Xx]=P[Xxixi<Xx]=P[Xxi+P[xi<Xx]0=FX(xi)


  • g) P[X>x]=1FX(x)P[Xx]

Continuous Random Variables

outcomes uncountable many


Example

T: arrival of a partical


ST={t:0t<}


V: voltage


SV={v:<v<}


θ: angle


Sθ={θ:0θ2π}


X: distance


SX={X:0x1}


P[xA]=1n0


No PMF, P[X=x]=0x

Theorem

For any random variable (continuous or discrete)


  • a) FX()=0FX()=1


  • b) FX(x) is nondecreasing in X


  • c) P[x<Xx]=FX(x)FX(x)


  • d) FX(x) is right continuous


Example

SX=[0,1]


P[xA]=P[x inB] where A, B are intervals of the same length contained in [0,1]


P[X1]=1FX(1)=1


P[X0]=0FX(0)=0


P[x1<x<x2]=P[0<x<x2x1]


(exercise)FX(x2)FX(x1)=FX(x2x1)Fx(x)=x


Probability Density Function (PDF)

fX(x)=dFx(x)dx


discrete: PMF <--> CDF (sum/difference)


continuous <---> (derivative/integral)


Theorem: Properties of PDF

  • a) fX(x)0 (FX(x) is nondecreasing)


  • b) FX(x)=xfX(x)dx(FX()=0)


  • c) fX(x)dx=1(Fx()=1)

Theorem

P[x1Xx2]=FX(x2)FX(x1)=x2fX(x)dxx1fX(x)dx=x1x2fX(x)

Some useful continuous Random Variables

Uniform R.V

fX(x)={1baaxb0otherwise


Exponential R.V

fX(x)=aeaxx0


Fx(x)=1eax


Gaussian (Normal) R.V.

𝒩(μ,σ2)<x<


fX(x)=12πσ2e(xμ)22σ2


FX(x)=112πσ2exμ2σ2 Template:BookCat