Sequences and Series/Power series

From testwiki
Jump to navigation Jump to search

Template:Proposition

Template:Proof

Template:AnchorTemplate:TextBox

Template:ToDo

Template:Theorem

{{proof|By Abelian partial summation, we have

1nxanzn=zxA(x)ln(z)1xA(t)ztdt

for |z|<1 and x1, where we denote as usual

A(x):=1nxan.

Substituting z=exp(w), we get

1nxanexp(wn)=exp(wx)A(x)w1xA(t)exp(wt)dt.

We then put

Template:BookCat