Signals and Systems/Table of Laplace Transforms

From testwiki
Jump to navigation Jump to search

Template:Signals and Systems Page

Laplace Transform

F(s)={f(t)}=0estf(t)dt.

Inverse Laplace Transform

1{F(s)}=12πicic+ieftF(s)ds=f(t)

Laplace Transform Properties

Property Definition
Linearity {af(t)+bg(t)}=aF(s)+bG(s)
Differentiation {f}=s{f}f(0)

{f}=s2{f}sf(0)f(0)
{f(n)}=sn{f}sn1f(0)f(n1)(0)

Frequency Division {tf(t)}=F(s)

{tnf(t)}=(1)nF(n)(s)

Frequency Integration {f(t)t}=sF(σ)dσ
Time Integration {0tf(τ)dτ}={u(t)*f(t)}=1sF(s)
Scaling {f(at)}=1aF(sa)
Initial value theorem f(0+)=limssF(s)
Final value theorem f()=lims0sF(s)
Frequency Shifts {eatf(t)}=F(sa)

1{F(sa)}=eatf(t)

Time Shifts {f(ta)u(ta)}=easF(s)

1{easF(s)}=f(ta)u(ta)

Convolution Theorem {f(t)*g(t)}=F(s)G(s)

Where:

f(t)=1{F(s)}
g(t)=1{G(s)}
s=σ+jω

Table of Laplace Transforms

No. Time Domain
x(t)=1{X(s)}
Laplace Domain
X(s)={x(t)}
1 12πjσjσ+jX(s)estds<math>|<math>x(t)estdt
2 δ(t) 1
3 δ(ta) eas
4 u(t) 1s
5 u(ta) eass
6 tu(t) 1s2
7 tnu(t) n!sn+1
8 1πtu(t) 1s
9 eatu(t) 1sa
10 tneatu(t) n!(sa)n+1
11 cos(ωt)u(t) ss2+ω2
12 sin(ωt)u(t) ωs2+ω2
13 cosh(ωt)u(t) ss2ω2
14 sinh(ωt)u(t) ωs2ω2
15 eatcos(ωt)u(t) sa(sa)2+ω2
16 eatsin(ωt)u(t) ω(sa)2+ω2
17 12ω3(sinωtωtcosωt) 1(s2+ω2)2
18 t2ωsinωt s(s2+ω2)2
19 12ω(sinωt+ωtcosωt) s2(s2+ω2)2