Solutions To Mathematics Textbooks/Basic Mathematics/Chapter 1

From testwiki
Jump to navigation Jump to search

Chapter 1

Section 2

1

(a+b)+(c+d)=(a+d)+(b+c)

a+b+c+d=(a+d)+(b+c) by associativity
a+b+d+c=(a+d)+(b+c) by commutativity
a+d+b+c=(a+d)+(b+c) by commutativity
(a+d)+(b+c)=(a+d)+(b+c) by associativity

1 (alternative)

(a+b)+(c+d)=(a+d)+(b+c)

=a+(b+(c+d)) by associativity
=a+(b+(d+c)) by commutativity
=a+(d+(b+c)) by associativity
=a+(d+(b+c)) by associativity

2

(a+b)+(c+d)=(a+c)+(b+d)

a+b+c+d=(a+c)+(b+d) by associativity
a+c+b+d=(a+c)+(b+d) by commutativity
(a+c)+(b+d)=(a+c)+(b+d) by associativity

2 (alternative)

(a+b)+(c+d)=(a+c)+(b+d)

a+(b+(c+d))=(a+c)+(b+d) by associativity
a+((b+c)+d)=(a+c)+(b+d) by associativity
a+((c+b)+d)=(a+c)+(b+d) by commutativity
a+(c+(b+d))=(a+c)+(b+d) by associativity
(a+c)+(b+d)=(a+c)+(b+d) by associativity

3

(ab)+(cd)=(a+c)+(bd)

ab+cd=(a+c)+(bd) by associativity
a+cbd=(a+c)+(bd) by commutativity
(a+c)+(bd)=(a+c)+(bd) by associativity

14

2+x=4

x=4+2

x=6

15

2x=5
x=3
x=3 multiply both sides by -1.

Section 3

30, 31, 32, 33

Although these can be done by hand the exercises suggest that you derive a general formula for finding the final population figures. The following one will suffice for the stated problems, where p is the initial population, x is the scaling factor (doubles, triples, etc.), y1 and y2 are the first year and end year respectively, and n is the number of years taken for the population to go up by x:


px(y2y1n)


For example, 32a:


2000003(2215191550)=20000036=145800000

Section 4

8-15

Write out the powers of 2 not exceeding the largest number in the problem set. Systematically check to see if each power divides the given number, starting with the largest.

16-23

Write out the powers of 3 not exceeding the largest number in the problem set. Systematically check to see if each power divides the given number, starting with the largest.

24

a)

Examining the definitions first, if ab(mod5) and xy(mod5) then ab=5n and xy=5m.


a+xb+y(mod5) means that (a+x)(b+y)=5k.


(a+x)(b+y)=(ab)+(xy)

(a+x)(b+y)=5n+5m

(a+x)(b+y)=5(n+m)


Let k=(n+m)


(a+x)(b+y)=5k

b)

Examine the definitions in part a) again. We have ab=5n and xy=5m.


Solving for a and x:


a=5n+b and x=5m+y


ax=(5n+b)(5m+y)

ax=25nm+5ny+5mb+by

ax=5(5nm+ny+mb)+by


Let t=5nm+ny+mb.


ax=5t+by

axby=5t+byby

axby=5t.

Section 5

7

a)

120, 720, 5040 and 40320.

c)

(mn)=(mmn)


m!n!(mn)!=m!(mn)!(m(mn))!,


m!n!(mn)!=m!(mn)!(mm+n)!,


m!n!(mn)!=m!(mn)!n!


d)

(mn)+(mn1)=(m+1n)


m!n!(mn)!+m!(n1)!(mn+1)!=(m+1)!n!(mn+1)!


Multiply both sides of the equation by nn and (mn+1)(mn+1), cancelling unnecessary factors to 1. We do this in order to achieve the denominator n!(mn+1)!:


1(mn+1)(mn+1)m!n!(mn)!+nn1m!(n1)!(mn+1)!=11(m+1)!n!(mn+1)!


Use the fact that a!(a+1)=(a+1)! and a(a1)!=a! to achieve:


m!(mn+1)n!(mn+1)!+m!nn!(mn+1)!=(m+1)!n!(mn+1)!


m!(mn+1)+m!nn!(mn+1)!=(m+1)!n!(mn+1)!


m!((mn+1)+n)n!(mn+1)!=(m+1)!n!(mn+1)!


m!(m+1)n!(mn+1)!=(m+1)!n!(mn+1)!


(m+1)!n!(mn+1)!=(m+1)!n!(mn+1)!


Hence,


(mn)+(mn1)=(m+1n)

Section 6

1

a)

2x13x+2=7


2x1=7(3x+2)

2x1=21x+14

19x=15


x=1519

2

a)

1x+y1xy=2yx2y2


(xy)(x+y)(x+y)(xy)=...


x+(x)+(y)+(y)x2+yxyxy2=...


2yx2y2=2yx2y2

b)

x31x1=1+x+x2

Recall from the chapter that if ab=cd, then ad=bc.


1(x31)=(x1)(1+x+x2)

x31=x+x2+x31xx2

x31=x31

Template:BookCat