Timeless Theorems of Mathematics/Product, Quotient, Composition Rules

From testwiki
Jump to navigation Jump to search

The product rule, the quotient rule and the composition (or chain) rule are the most fundamental rules or formulas of differential calculus. For the functions u(x) and v(x), the rules are,

  1. Product Rule: Dx(uv)=vDxu+uDxv
  2. Quotient Rule: Dx(uv)=1v2(vDxuuDxv)
  3. Composition Rule: Dxv=DyvDxy

Proof

Product Rule

Dx(uv) =limΔx0Δ(uv)Δx =limΔx0u(x+Δx)v(x+Δx)u(x)v(x)Δx =limΔx0u(x+Δx)v(x+Δx)u(x)v(x+Δx)+u(x)v(x+Δx)u(x)v(x)Δx =limΔx0[u(x+Δx)u(x)]v(x+Δx)+u(x)[v(x+Δx)v(x)]Δx =limΔx0(Δu)v(x+Δx)+u(x)(Δv)Δx =limΔx0[ΔuΔxv(x+Δx)+ΔvΔxu(x)] =limΔx0[Dxuv(x+Δx)+uDxv] =vDxu+uDxv


Dx(uv)=vDxu+uDxv [Proved]


Quotient Rule

Dx(uv) =limΔx0Δ(uv)Δx =limΔx01Δx[u(x+Δx)v(x+Δx)u(x)v(x)] =limΔx01Δx[u(x+Δx)v(x)u(x)v(x+Δx)v(x)v(x+Δx)] =limΔx01Δx[u(x+Δx)v(x)v(x)u(x)+v(x)u(x)u(x)v(x+Δx)v(x)v(x+Δx)] =limΔx01Δx[v(x)(u(x+Δx)u(x))+u(x)(v(x)v(x+Δx)v(x)v(x+Δx)] =limΔx01Δx[v(x)(Δu)+u(x)(Δv)v(x)v(x+Δx)] =limΔx0v(x)(Δu)Δx+u(x)(Δv)Δxv(x)v(x+Δx) =limΔx0v(x)ΔuΔx+u(x)ΔvΔxv(x)v(x+Δx) =limΔx0v(x)Dxu+u(x)Dxvv(x)v(x+Δx) =v(x)Dxu+u(x)Dxvv(x)v(x) =vDxu+uDxvv2


Dx(uv)=vDxuuDxvv2

Composition Rule

Dxv =limΔx0ΔvΔx =limΔx0ΔvΔyΔxΔy =limΔx0ΔvΔylimΔx0ΔyΔx =limΔy0ΔvΔylimΔx0ΔyΔx =DyvDxy

Dxv=DyvDxy


Template:Status

Template:BookCat