Trigonometry/Sum into Product

From testwiki
Jump to navigation Jump to search

These are exercises on the formulae derived in Book 1 for converting the sum or difference of two sines or two cosines into a product.

[1] sin7θsin5θcos7θ+cos5θ=tanθ


[2]

cos6αcos4αsin6α+sin4α=tanα

[3]

sinA+sin3AcosA+cos3A=tan2A

[4]

sin7AsinAsin8Asin2A=cos4Asec5A

[5]

cos2ϕ+cos2θcos2ϕcos2θ=cot(ϕ+θ)cot(ϕθ)

[6]

sin2A+sin2Bsin2Asin2B=tan(AB)cot(AB)

[7]

sinA+sin2AcosAcos2A=cot(A2)

[8]

sin5λsin3λcos5λ+cos3λ=tanλ

[9]

cos2Bcos2Asin2B+sin2A=tan(AB)

[10]

cos(ϕ+θ)+sin(ϕθ)=2sin(45o+ϕ)cos(45o+θ)

[11]

sinα+sinβsinαsinβ=tan(α+β2)cot(αβ2)

[12]

cosψ+cosωcosωcosψ=cot(ψ+ω2)cot(ψω2)

[13]

sinϕ+sinθcosϕ+cosθ=tan(ϕ+θ2)

[14]

sinAsinBcosBcosA=cot(A+B2)

[15]

cos3AcosAsin3AsinA+cos2Acos4Asin4Asin2A=sinAcos2Acos3A

[16]

acosϕ+bsinϕ=a2+b2cos[ϕtan1(ba)]

Template:BookCat

pt:Matemática elementar/Trigonometria/Transformações de soma de funções trigonométricas em produtos/Exercícios