Trigonometry/Trigonometric Formula Reference

From testwiki
Jump to navigation Jump to search


Template:ExerciseRobox Cover the right hand side of each formula, and use the information about remembering formulae from the previous page to get the right hand side.

Template:Robox/Close

Principal Trig Relationships

The following identities give relationships between the trigonometric functions.

  1. sin(x)=cos(π2x)
  2. cos(x)=sin(π2x)
  3. tan(x)=sin(x)cos(x)
  4. csc(x)=1sin(x)
  5. sec(x)=1cos(x)
  1. sin2(θ)+cos2(θ)=1
  2. tan2(θ)+1=sec2(θ)

Template:ExampleRobox One formula is missing.

By dividing the sin2(θ)+cos2(θ)=1 by

sin2(θ)

or by

cos2(θ)

we can get two other formulae.

The missing formula is obtained by dividing through by sin2(θ)

sin2(θ)sin2(θ)+cos2(θ)sin2(θ)=1sin2(θ)

The missing formula is:

1+cot2(θ)=csc2(θ)

Template:Robox/Close

Periodicity

Four trigonometric functions are π periodic:

  1. sin(θ)=sin(θ+2π)
  2. cos(θ)=cos(θ+2π)
  3. csc(θ)=csc(θ+2π)
  4. sec(θ)=sec(θ+2π)

Two trigonometric functions are π periodic:

  1. tan(θ)=tan(θ+π)
  2. cot(θ)=cot(θ+π)

Angle Sums

Formulae involving sums of angles are as follows:

  1. sin(α+β)=sin(α)cos(β)+cos(α)sin(β)
  2. cos(α+β)=cos(α)cos(β)sin(α)sin(β)
  3. sin(αβ)=sin(α)cos(β)cos(α)sin(β)
  4. cos(αβ)=cos(α)cos(β)+sin(α)sin(β)

Multiple Angle Formulae

Substituting β=α gives the double angle formulae

  1. sin(2α)=2sin(α)cos(α)
  2. cos(2α)=cos2(α)sin2(α)

Substituting sin2(α)+cos2(α)=1 gives

  1. cos(2α)=2cos2(α)1
  2. cos(2α)=12sin2(α)

These can be obtained by putting β=2θ,α=θ in the addition formula.

  1. sin(3θ)=3sin(θ)4sin3(θ)
  2. cos(3θ)=4cos3(θ)3cos(θ)
  3. tan(3θ)=3tan(θ)tan3(θ)13tan2(θ)

This can also be obtained from the angle sums formula.

  1. 2sin(A)cos(B)=sin(A+B)+sin(AB)

This list may duplicate some of the periodicity formulas above, but all the formulas are given for the sake of completeness. Angles are expressed in degrees rather than radians. Similar relations for cot, sec and cosec follow immediately from the definitions of these functions; just replace sin by cosec, cos by sec and tan by cot (and vice versa).

sin(x)

  1. sin(x)=sin(x)
  2. sin(90x)=cos(x)
  3. sin(90+x)=cos(x)
  4. sin(180x)=sin(x)
  5. sin(180+x)=sin(x)
  6. sin(270x)=cos(x)
  7. sin(270+x)=cos(x)
  8. sin(360x)=sin(x)
  9. sin(360+x)=sin(x)

cos(x)

  1. cos(x)=cos(x)
  2. cos(90x)=sin(x)
  3. cos(90+x)=sin(x)
  4. cos(180x)=cos(x)
  5. cos(180+x)=cos(x)
  6. cos(270x)=sin(x)
  7. cos(270+x)=sin(x)
  8. cos(360x)=cos(x)
  9. cos(360+x)=cos(x)

tan(x)

  1. tan(x)=tan(x)
  2. tan(90x)=cot(x)
  3. tan(90+x)=cot(x)
  4. tan(180x)=tan(x)
  5. tan(180+x)=tan(x)
  6. tan(270x)=cot(x)
  7. tan(270+x)=cot(x)
  8. tan(360x)=tan(x)
  9. tan(360+x)=tan(x)

Template:ExerciseRobox Rewrite the above formulas using radians. Template:Robox/Close


Template:Trig/NAV