Using High Order Finite Differences/Third Order Method

From testwiki
Jump to navigation Jump to search

Template:BookCat

A Third Order Accurate Method

Statement of the Problem

Let D be the rectangle

D={(x,y):0<x<a, 0<y<b}

and let C be the boundary of D.

The operator

Δu(x,y)=2x2u(x,y)+2y2u(x,y)

is the usual Laplacian. The problem, determine a function u(x, y) such that

{Δu(x,y)=f(x,y), for (x,y)Du(x,y)=g(x,y), for (x,y)C,(1.0)

is called a Poisson problem.

discrete approximation

To approximate u(x, y) numerically, use the grid

(xi,yj), 0im+1, 0jn+1.
with
xi=ih,yi=j k
and
h=a/(m+1),k=b/(n+1)

The second partial derivative
2x2 u(x,y)
can be approximated on the grid by difference quotients
(h2hx2) u(xi,yj).

These difference quotients are given by

(h2hx2) u(x1,yj) =.

112u(x1+3h,yj)+13u(x1+2h,yj)+12u(x1+h,yj)53u(x1,yj)+1112u(x1h,yj) h2

(h2hx2) u(xi,yj) =.

112u(xi+2h,yj)+43u(xi+h,yj)52u(xi,yj)+43u(xih,yj)112u(xi2h,yj) h2

for i=2, 3, m1and

(h2hx2) u(xm,yj) =.

1112u(xm+h,yj)53u(xm,yj)+12u(xmh,yj)+13u(xm2h,yj)112u(xm3h,yj) h2


The second partial derivative
2y2 u(x,y)
can be approximated on the grid by difference quotients
(k2ky2) u(xi,yj).

These difference quotients are given by

(k2ky2) u(xi,y1) =.

112u(xi,y1+3k)+13u(xi,y1+2k)+12u(xi,y1+k)53u(xi,y1)+1112u(xi,y1k) k2

(k2ky2) u(xi,yj) =.

112u(xi,yj+2k)+43u(xi,yj+k)52u(xi,yj)+43u(xi,yjk)112u(xi,yj2k) k2

for j=2, 3, n1and

(k2ky2) u(xi,yn) =.

1112u(xi,yn+k)53u(xi,yn)+12u(xi,ynk)+13u(xi,yn2k)112u(xi,yn3k) k2

truncation errors


The difference quotients   (h2hx2) u(xi,yj)   are third order accurate with truncation errors:

τx(xi,yj)=(h2hx2) u(xi,yj)2x2 u(xi,yj)=h3 120Mx(5)(xi,yj)

with

Mx(5)(x1,yj)=6765x5u(x1+ϕ1(1,j)h, yj)254125x5u(x1+ϕ2(1,j)h, yj) ,

for some    0<ϕ1(1,j)<2,1<ϕ2(1,j)<3 ,

Mx(5)(xi,yj)=45x5u(xi+ϕ1(i,j)h, yj)45x5u(xi+ϕ2(i,j)h, yj) ,

for some    2<ϕ1(i,j)<1,1<ϕ2(i,j)<2,

for  i = 2, 3, , m1.     

When  6x6u(x,y)   is continuous, these estimates also hold.

τx(xi,yj)=h4 720Mx6(xi,yj),   with

Mx6(xi,yj)=836x6u(xi+ϕ1(i,j)h,yj)3236x6u(xi+ϕ2(i,j)h,yj)

for some    1<ϕ1(i,j)<1,2<ϕ2(i,j)<2,    

for  i = 2, 3, , m1.

The case for  i=m  is

Mx(5)(xm,yj)=254125x5u(xm+ϕ1(m,j)h, yj)6765x5u(xm+ϕ2(m,j)h, yj) ,

for some    3<ϕ1(m,j)<1,2<ϕ2(m,j)<0 .


The difference quotients   (k2ky2) u(xi,yj)   are third order accurate with truncation errors:

τy(xi,yi)=(k2ky2) u(xi,y1)2y2 u(xi,y1)=k3 120My(5)(xi,y1)

with

My(5)(xi,y1)=6765y5u(xi, y1+ψ1(i,1)k)254125y5u(xi, y1+ψ2(i,1)k) ,

for some    0<ψ1(i,1)<2,1<ψ2(i,1)<3 ,

My(5)(xi,yj)=45y5u(xi, yj+ψ1(i,j)k)45y5u(xi, yj+ψ2(i,j)k) ,

for some    2<ψ1(i,j)<1,1<ψ2(i,j)<2,

for  j = 2, 3, , n1.     

When  6y6u(x,y)   is continuous, these estimates also hold.

τy(xi,yj)=k4 720My6(xi,yj),   with

My6(xi,yj)=836y6u(xi+ψ1(i,j)k,yj)3236y6u(xi+ψ2(i,j)k,yj)

for some    1<ψ1(i,j)<1,2<ψ2(i,j)<2,    

for  j = 2, 3, , n1.

The case for  j=n  is

My(5)(xi,yn)=254125y5u(xi, yn+ψ1(i,n)k)6765y5u(xi, yn+ψ2(i,n)k) ,

for some    3<ψ1(i,n)<1,2<ψ2(i,n)<0 .

The Laplacian  Δu(x,y)  then can be approximated on the interior of the grid by

Δh,ku(xi,yj)=h2hx2u(xi,yj)+k2ky2u(xi,yj)

The truncation error

τ(xi,yj)=Δh,ku(xi,yj)Δu(xi,yj)

is given by

τ(xi,yj)=τx(xi,yj)+τy(xi,yj).

finite difference operations defined


For the grid vector

U={Ui,j}0im+1, 0jn+1

define the finite difference operations

Δi,j=(h2hx2)i,jU+(k2ky2)i,jU

by the following.

(h2hx2)1,j U =.

112U4,j+13U3,j+12U2,j53U1,j+1112U0,j h2

(h2hx2)i,j U =.

112Ui+2,j+43Ui+1,j52Ui,j+43Ui1,j112Ui2,j h2

for i=2, 3, m1and

(h2hx2)m,j U =.

1112Um+1,j53Um,j+12Um1,j+13Um2,j112Um3,j h2

(k2ky2)i,1 U =.

112Ui,4+13Ui,3+12Ui,253Ui,1+1112Ui,0 k2

(k2ky2)i,j U =.

112Ui,j+2+43Ui,j+152Ui,j+43Ui,j1112Ui,j2 k2

for j=2, 3, n1and

(k2ky2)i,n U =.

1112Ui,n+153Ui,n+12Ui,n1+13Ui,n2112Ui,n3 k2

simulation of the problem


To simulate the problem  (1.0)   let

U0,j  =g(x0, yj),0jn+1Um+1,j  =g(xm+1, yj),0jn+1Ui,0  =g(xi, y0),0im+1Ui,n+1  =g(xi, yn+1),0im+1


Then solve the non-singular linear system

Δi,jU=f(xi,yj)1im, 1jn  ;

for the remaining  Ui,j 

error estimation


The error

Uu={Ui,ju(xi,yj)} ,

satisfies

Uu2ρa2b2 π2(a2+b2)τ2(1+O(h2+k2)) .

for

τ={τ(xi,yj)},1im, 1jn  ,

and

ρ  1/(1(1+10)/12) .

proof of truncation error estimates

The truncation error estimates for  (h2hx2u(xi,yj))  are done under the assumption that  u(x,y)  is sufficiently smooth so that  5x5u(x,y)  is continuous. For notational convenience let

g(x)=u(x,yj).

Expand  g(x)  in it's Taylor expansion about  xi,

g(xi+Δx)=g(xi)+g(1)(xi)Δx+12g(2)(xi)(Δx)2+16g(3)(xi)(Δx)3+124g(4)(xi)(Δx)4+1120g(5)(z)(Δx)5.

where  z  is some number between  xi  and  xi+Δx. Then

h2hx2u(x1,yj)=(112g(x1+3h)+13g(x1+2h)+12g(x1+h)53g(x1)+1112g(x1h)) h2

=g(x1)(112+13+1253+1112) h2+g(1)(x1)(112(3h)+13(2h)+12(h)53(0)+1112(h)) h2+12g(2)(x1)(112(3h)2+13(2h)2+12(h)253(0)2+1112(h)2) h2+16g(3)(x1)(112(3h)3+13(2h)3+12(h)353(0)3+1112(h)3) h2+124g(4)(x1)(112(3h)4+13(2h)4+12(h)453(0)4+1112(h)4) h2+1120(112g(5)(z1)(3h)5+13g(5)(z2)(2h)5+12g(5)(z3)(h)553(0)5 h2+1112g(5)(z4)(h)5) h2

=g(2)(x1)+h3 120(814g(5)(z1)+323g(5)(z2)+12g(5)(z3)1112g(5)(z4))

where

x1<z1<x1+3h,x1<z2<x1+2h,x1<z3<x1+h,andx1h<z4<x1..

Since

676min(g(5)(x1+ϕh))0ϕ2323g(5)(z2)+12g(5)(z3)676max(g(5)(x1+ϕh))0ϕ2,

25412min(g(5)(x1+ϕh))1ϕ3814g(5)(z1)+1112g(5)(z4)25412max(g(5)(x1+ϕh))1ϕ3,

from the intermediate value property

323g(5)(z2)+12g(5)(z3)=676g(5)(x1+ϕ1h)),for0<ϕ1,<2,

814g(5)(z1)+1112g(5)(z4)=25412g(5)(x1+ϕ2h),for1<ϕ2<3..

This gives

h2hx2u(x1,yj)=g(2)(x1)+h3 120(676g(5)(x1+ϕ1h)25412g(5)(x1+ϕ2h))=2x2u(x1,yj)+h3 120(6765x5u(x1+ϕ1h,yj)254125x5u(x1+ϕ2h,yj))

which is

τx(x1,yj)=h3 120Mx5(x1,yj).



For i=2,3,,m1

h2hx2u(xi,yj)=(112g(xi+2h)+43g(xi+h)52g(xi)+43g(xih)112g(xi2h)) h2

=g(xi)(112+4352+43112) h2+g(1)(xi)(112(2h)+43(h)52(0)+43(h)112(2h)) h2+12g(2)(xi)(112(2h)2+43(h)252(0)2+43(h)2112(2h)2) h2+16g(3)(xi)(112(2h)3+43(h)352(0)3+43(h)3112(2h)3) h2+124g(4)(xi)(112(2h)4+43(h)452(0)4+43(h)4112(2h)4) h2+1120(112g(5)(z1)(2h)5+43g(5)(z2)(h)552(0)5+43g(5)(z3)(h)5 h2112g(5)(z4)(2h)5) h2

=g(2)(xi)+h3 120(83g(5)(z1)+43g(5)(z2)43g(5)(z3)+83g(5)(z4))

where

xi<z1<xi+2h,xi<z2<xi+h,xih<z3<xi,andxi2h<z4<xi..

Reasoning as before, combining terms with like signs and using the intermediate value property,

43g(5)(z2)+83g(5)(z4)=4g(5)(xi+ϕ1h)),for2<ϕ1,<1,

83g(5)(z1)+43g(5)(z3)=4g(5)(xi+ϕ2h),for1<ϕ2<2..

This gives

h2hx2u(xi,yj)=g(2)(xi)+h3 120(676g(5)(xi+ϕ1h)25412g(5)(xi+ϕ2h))=2x2u(xi,yj)+h3 120(45x5u(xi+ϕ1h,yj)45x5u(xi+ϕ2h,yj))

which is

τx(xi,yj)=h3 120Mx5(xi,yj).

Under the assumption that  6x6u(x,y)  is continuous, in the preceding argument, the expression

+1120(112g(5)(z1)(2h)5+43g(5)(z2)(h)552(0)5+43g(5)(z3)(h)5 h2112g(5)(z4)(2h)5) h2

can be replaced by

+1120g(5)(xi)(112(2h)5+43(h)552(0)5+43(h)5 h2112(2h)5) h2+1720(112g(6)(z1)(2h)6+43g(6)(z2)(h)652(0)5+43g(6)(z3)(h)6 h2112g(6)(z4)(2h)6) h2

This gives

h2hx2u(xi,yj)==2x2u(xi,yj)+h4 720(836x6u(xi+ϕ1h,yj)3236x6u(xi+ϕ2h,yj))

with    1<ϕ1<1,2<ϕ2<2    which is

τx(xi,yj)=h4 720Mx6(xi,yj).

The remaining truncation error estimates are done in the same way.

end working

Let the error

e={ei,j},1im, 1jn,

be defined by

ei,j=Ui,ju(xi,yj) .

U is the solution of the finite difference scheme (xx) and u(xi,yj) is the solution to (1.0).

Since

Δi,je=Δi,jU+Δh,ku(xi,yj)=f(xi,yj)+(Δu(xi,yj)+τ(xi,yj))=τ(xi,yj) 
we get that

i=1mj=1nei,j(Δi,je) = i=1mj=1nei,jτ(xi,yj)  e2τ2 .

Next it will be shown that the operator  Δi,j  is positive definite for  e,  in particular that

i=1mj=1nei,j(Δi,je) 

      λ(4a2(m+1)2(something)+4b2(n+1)2())e2 ,

with

λ  1(1+10)/12 .


Begin with  i=1mj=1nei,j(Δi,je)=
i=1mj=1nei,j((h2hx2)i,je(k2ky2)i,je)=
j=1ni=1mei,j((h2hx2)i,je)+i=1mj=1nei,j((k2ky2)i,je)

The sum  i=1mei,j((h2hx2)i,je)  will be estimated first.

work

h2(h2hx2)1,j e =.

112e4,j13e3,j12e2,j+53e1,j1112e0,j



=76(11e2,j+21e1,j11e0,j)

+(112(e4,je3,j)14(e3,je2,j)+512(e2,je1,j)14(e1,je0,j))




=(112e3,j54e2,j+54e1,j112e0,j)(112e4,j+512e3,j34e2,j512e1,j+56e0,j)

h2(h2hx2)i,j e =.

112ei+2,j43ei+1,j+52ei,j43ei1,j+112ei2,j


=76(11ei+1,j+21ei,j11ei1,j)

+112(ei+2,jei+1,j)112(ei+1,jei,j)

+112(ei,jei1,j)112(ei1,jei2,j)





=(112ei+2,j54ei+1,j+54ei,j112ei1,j)(112ei+1,j54ei,j+54ei1,j112ei2,j)

for i=2, 3, m1and

h2(h2hx2)m,j e =.

1112em+1,j+53em,j12em1,j13em2,j+112em3,j

=(56em+1,j+512em,j+34em1,j+14em2,j+112em3,j)(112em+1,j54em,j+54em1,j112em2,j)



=76(11em+1,j+21em,j11em1,j)

+(112(em2,jem3,j)+14(em1,jem2,j)512(em,jem1,j)+14(em+1,jem,j))



end work


The  summation by parts formula  is now stated so it can be used.


i=1mwi(vivi1)=wmvmw0v0i=0m1vi(wi+1wi)

Now,h2(h2hx2)i,j e =vi,jvi1,j,with

v0,j=(112e4,j+512e3,j34e2,j512e1,j+56e0,j)

=112(e4,je3,j)+13(e3,je2,j)512(e2,je1,j)56(e1,je0,j)

vi,j=(112ei+2,j54ei+1,j+54ei,j112ei1,j)=112(ei+2,jei+1,j)76(ei+1,jei,j)+112(ei,jei1,j)

for i=1, 2, m1and.

vm,j=(56em+1,j+512em,j+34em1,j+14em2,j+112em3,j)

=56(em+1,jem,j)512(em,jem1,j)+13(em1,jem2,j)112(em2,jem3,j)

So the sumi=1mei,j(h2(h2hx2)i,je)=i=1mei,j(vi,jvi1,j) =em,jvm,je0,jv0,ji=0m1vi,j(ei+1,jei,j)

Taking into account that  em+1,j=e0,j=0  it follows

i=1mei,j(h2(h2hx2)i,je)=i=0mvi,j(ei+1,jei,j)

=v0,j(e1,je0,j)i=1m1vi,j(ei+1,jei,j)vm,j(em+1,jem,j)

=112(e4,je3,j)(e1,je0,j)13(e3,je2,j)(e1,je0,j)+512(e2,je1,j)(e1,je0,j)+56(e1,je0,j)2112i=1m1(ei+2,jei+1,j)(ei+1,jei,j)+76i=1m1(ei+1,jei,j)2112i=1m1(ei,jei1,j)(ei+1,jei,j)+56(em+1,jem,j)2+512(em,jem1,j)(em+1,jem,j)13(em1,jem2,j)(em+1,jem,j)+112(em2,jem3,j)(em+1,jem,j)

working here

Collect like terms in the expression immediately above as follows.

56(e1,je0,j)2+76i=1m1(ei+1,jei,j)2+56(em+1,jem,j)2

=76i=0m(ei+1,jei,j)213(e1,je0,j)213(em+1,jem,j)2

112i=1m1(ei+2,jei+1,j)(ei+1,jei,j)112i=1m1(ei,jei1,j)(ei+1,jei,j)

=16i=2m1(ei+1,jei,j)(ei,jei1,j)112(e2,je1,j)(e1,je0,j)112(em+1,jem,j)(em,jem1,j)

Now, rewrite the expression after making cancellations.

76i=0m(ei+1,jei,j)216i=2m1(ei+1,jei,j)(ei,jei1,j)13(e1,je0,j)213(em+1,jem,j)2+112(e4,je3,j)(e1,je0,j)13(e3,je2,j)(e1,je0,j)+13(e2,je1,j)(e1,je0,j)+13(em,jem1,j)(em+1,jem,j)13(em1,jem2,j)(em+1,jem,j)+112(em2,jem3,j)(em+1,jem,j)

The following simple inequality will be used to bound terms.

(ab)2=a22ab+b202aba2+b2ab12(a2+b2)
and also

ab12(α2a2+b2/α2).

i=2m1|(ei+1,jei,j)(ei,jei1,j)|=i=3m2|(ei+1,jei,j)(ei,jei1,j)|+|(e3,je2,j)(e2,je1,j)|+|(em,jem1,j)(em1,jem2,j)|12(i=3m2(ei+1,jei,j)2+i=3m2(ei,jei1,j)2)+|(e3,je2,j)(e2,je1,j)|+|(em,jem1,j)(em1,jem2,j)|

=i=3m3(ei+1,jei,j)2+12(e3,je2,j)2+12(em1,jem2,j)2+|(e3,je2,j)(e2,je1,j)|+|(em,jem1,j)(em1,jem2,j)|

=i=2m2(ei+1,jei,j)212(e3,je2,j)212(em1,jem2,j)2+|(e3,je2,j)(e2,je1,j)|+|(em,jem1,j)(em1,jem2,j)|

i=2m2(ei+1,jei,j)212(e3,je2,j)212(em1,jem2,j)2+12(α12(e3,je2,j)2+(e2,je1,j)2/α12)+12(β12(em1,jem2,j)2+(em,jem1,j)2/β12)

|(e4,je3,j)(e1,je0,j)|12(α22(e4,je3,j)2+(e1,je0,j)2/α22)|(e3,je2,j)(e1,je0,j)|12(α32(e3,je2,j)2+(e1,je0,j)2/α32)|(e2,je1,j)(e1,je0,j)|12(α42(e2,je1,j)2+(e1,je0,j)2/α42)

|(em,jem1,j)(em+1,jem,j)|12(β22(em,jem1,j)2+(em+1,jem,j)2/β22)|(em1,jem2,j)(em+1,jem,j)|12(β32(em1,jem2,j)2+(em+1,jem,j)2/β32)|(em2,jem3,j)(em+1,jem,j)|12(β42(em2,jem3,j)2+(em+1,jem,j)2/β42)

Now, substitute all the inequalities into the expression.

76i=0m(ei+1,jei,j)216i=2m1(ei+1,jei,j)(ei,jei1,j)13(e1,je0,j)213(em+1,jem,j)2+112(e4,je3,j)(e1,je0,j)13(e3,je2,j)(e1,je0,j)+13(e2,je1,j)(e1,je0,j)+13(em,jem1,j)(em+1,jem,j)13(em1,jem2,j)(em+1,jem,j)+112(em2,jem3,j)(em+1,jem,j)


76i=0m(ei+1,jei,j)216(i=2m2(ei+1,jei,j)212(e3,je2,j)212(em1,jem2,j)2+12(α12(e3,je2,j)2+(e2,je1,j)2/α12)+12(β12(em1,jem2,j)2+(em,jem1,j)2/β12))13(e1,je0,j)213(em+1,jem,j)2112(12(α22(e4,je3,j)2+(e1,je0,j)2/α22))13(12(α32(e3,je2,j)2+(e1,je0,j)2/α32))13(12(α42(e2,je1,j)2+(e1,je0,j)2/α42))13(12(β22(em,jem1,j)2+(em+1,jem,j)2/β22))13(12(β32(em1,jem2,j)2+(em+1,jem,j)2/β32))112(12(β42(em2,jem3,j)2+(em+1,jem,j)2/β42))

=76i=0m(ei+1,jei,j)216i=0m(ei+1,jei,j)2(16+(124)/α22+(16)/α32+(16)/α42)(e1,je0,j)2(16+(112)/α12+16α42)(e2,je1,j)2(112+112α12+16α32)(e3,je2,j)2(124α22)(e4,je3,j)2(16+(16)/β22+(16)/β32+(124)/β42)(em+1,jem,j)2(16+(112)/β12+16β22)(em,jem1,j)2(112+112β12+16β32)(em1,jem2,j)2(124β42)(em2,jem3,j)2

The choice

α12=β12=(51)/2,α22=β42=8,α32=α42=β22=β32=(115)/4,

bounds all of the coefficients in the  αi's  and  βi's  by  13   and yields the long sought inequality

i=1mei,j(h2(h2hx2)i,je)23i=0m(ei+1,jei,j)2.

and

j=1ni=1mei,j((h2hx2)i,je)23h2j=1ni=0m(ei+1,jei,j)2.

Reasoning in the exact same manner for the dimension in  y

j=1nei,j(k2(k2ky2)i,je)23j=0n(ei,j+1ei,j)2.

and

i=1mj=1nei,j((k2ky2)i,je)23k2i=1mj=0n(ei,j+1ei,j)2.

Applying   i=1mj=1nei,j(Δi,je)=

j=1ni=1mei,j((h2hx2)i,je)+i=1mj=1nei,j((k2ky2)i,je)

leads to the inequality   i=1mj=1nei,j(Δi,je)

23h2j=1ni=0m(ei+1,jei,j)2+23k2i=1mj=0n(ei,j+1ei,j)2.

edit end